On the condition numbers of a multiple eigenvalue of a generalized eigenvalue problem
نویسندگان
چکیده
منابع مشابه
On the condition numbers of a multiple eigenvalue of a generalized eigenvalue problem
For standard eigenvalue problems, closed-form expressions for the condition numbers of a multiple eigenvalue are known. In particular, they are uniformly 1 in the Hermitian case and generally take different values in the non-Hermitian case. We consider the generalized eigenvalue problem and identify the condition numbers. Our main result is that a multiple eigenvalue generally has multiple cond...
متن کاملOn the numerical condition of a generalized Hankel eigenvalue problem
The generalized eigenvalue problem ̃ Hy= λHy with H a Hankel matrix and ̃ H the corresponding shifted Hankel matrix occurs in number of applications such as the reconstruction of the shape of a polygon from its moments, the determination of abscissa of quadrature formulas, of poles of Padé approximants, or of the unknown powers of a sparse black box polynomial in computer algebra. In many of th...
متن کاملStructured Eigenvalue Condition Numbers
This paper investigates the effect of structure-preserving perturbations on the eigenvalues of linearly and nonlinearly structured eigenvalue problems. Particular attention is paid to structures that form Jordan algebras, Lie algebras, and automorphism groups of a scalar product. Bounds and computable expressions for structured eigenvalue condition numbers are derived for these classes of matri...
متن کاملEigenvalues of Graded Matrices and the Condition Numbers of a Multiple Eigenvalue Eigenvalues of Graded Matrices and the Condition Numbers of a Multiple Eigenvalue
abstract This paper concerns two closely related topics: the behavior of the eigenvalues of graded matrices and the perturbation of a nondefective multiple eigenvalue. We will show that the eigenvalues of a graded matrix tend to share the graded structure of the matrix and give precise conditions insuring that this tendency is realized. These results are then applied to show that the secants of...
متن کاملOn condition numbers of polynomial eigenvalue problems
In this paper, we investigate condition numbers of eigenvalue problems of matrix polynomials with nonsingular leading coefficients, generalizing classical results of matrix perturbation theory. We provide a relation between the condition numbers of eigenvalues and the pseudospectral growth rate. We obtain that if a simple eigenvalue of a matrix polynomial is ill-conditioned in some respects, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerische Mathematik
سال: 2011
ISSN: 0029-599X,0945-3245
DOI: 10.1007/s00211-011-0440-x